CENTRE CANDIDATE NUMBER NUMBER **CHEMISTRY** 9701/34 Paper 3 Advanced Practical Skills 2 **October/November 2018** 2 hours Candidates answer on the Question Paper. As listed in the Confidential Instructions Additional Materials: **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Give details of the practical session and laboratory where appropriate, in the boxes provided. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. Use of a Data Booklet is unnecessary. Session Qualitative Analysis Notes are printed on pages 10 and 11. A copy of the Periodic Table is printed on page 12. At the end of the examination, fasten all your work securely together. Laboratory The number of marks is given in brackets [] at the end of each question or part question. For Examiner's Use 1 2 3 Total This document consists of 12 printed pages. IB18 11_9701_34/6RP International Examinations [Turn over © UCLES 2018

Cambridge Cal International Car AS & A Level

CANDIDATE NAME

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 In this experiment you will determine the percentage by mass of an impure sample of sodium hydrogencarbonate, NaHCO $_3$.

You will do this by titration with hydrochloric acid, HC*l*. The impurity in the sample is **X**. **X** is a sodium compound which does not react with HC*l*.

FB 1 is a mixture containing sodium hydrogencarbonate and **X**. You are supplied with approximately 6.5 g of **FB 1**. You will also use **FB 1** in **Question 2**. **FB 2** is 0.105 mol dm⁻³ hydrochloric acid, HC*l*. methyl orange indicator

(a) Method

Preparing a solution of FB 1

- Weigh the 100 cm³ beaker. Record the mass.
- Add between 2.8g and 3.0g of **FB 1** to the beaker.
- Reweigh the beaker with **FB 1**. Record the mass.
- Calculate and record the mass of **FB 1** used.
- Add approximately 50 cm³ of distilled water to **FB 1** in the beaker.
- Stir the mixture with a glass rod until all the **FB 1** has dissolved.
- Transfer this solution into the 250 cm³ volumetric flask.
- Wash the beaker with distilled water and transfer the washings to the volumetric flask.
- Add distilled water to the volumetric flask up to the mark.
- Shake the flask thoroughly.
- This solution of impure sodium hydrogencarbonate is **FB 3**. Label the flask **FB 3**.

Titration of FB 3

- Fill the burette with **FB 2**.
- Pipette 25.0 cm³ of **FB 3** into a conical flask.
- Add approximately 10 drops of methyl orange indicator.
- Carry out a rough titration.
- Record your burette readings and the rough titre in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of **FB 2** added in each accurate titration.

Ι	
II	
III	
IV	
V	
VI	
VII	
VIII	

[8]

(b) From your accurate titration results, obtain a suitable value for the volume of FB 2 to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 3** required cm³ of **FB 2**. [1]

[1]

(c) Calculations

(i) Give your answers to (ii), (iii), (iv) and (v) to the appropriate number of significant figures.

(ii) Calculate the number of moles of hydrochloric acid, HC*l*, in the volume of **FB 2** calculated in (b).

moles of HCl = mol [1]

(iii) Complete and balance the equation for the reaction of sodium hydrogencarbonate with hydrochloric acid. Include state symbols.

 $\dots \mathsf{NaHCO}_3 \dots + \dots \mathsf{HC}l \dots \rightarrow \dots \mathsf{NaC}l \dots + \dots \mathsf{CO}_2 \dots + \dots$

Deduce the number of moles of sodium hydrogencarbonate that reacted with the number of moles of HC*l* calculated in (ii).

moles of NaHCO₃ = mol [1]

(iv) Use your answer to (iii) to calculate the number of moles of sodium hydrogencarbonate in the **FB 1** that you weighed out.

moles of NaHCO₃ in **FB 1** used = mol [1]

(v) Calculate the percentage by mass of NaHCO₃ in **FB 1**.

percentage by mass of NaHCO₃ in **FB 1** = % [1]

[Total: 14]

Question 2 starts on the next page.

2 You will determine the percentage by mass of NaHCO₃ in **FB 1** again, this time by thermal decomposition.

The equation for the thermal decomposition of sodium hydrogencarbonate is shown.

 $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$

FB 1 is a mixture containing sodium hydrogencarbonate and an impurity, X.

(a) Method

- Weigh a crucible with its lid and record the mass.
- Add between 2.8g and 3.0g of **FB 1** to the crucible. Weigh the crucible and lid with **FB 1** and record the mass.
- Place the crucible on the pipe-clay triangle. Heat the crucible and contents gently for approximately two minutes, with the lid off.
- Then heat strongly for approximately three minutes.
- Replace the lid and leave the crucible and residue to cool for at least five minutes.

While the crucible is cooling, you may wish to begin work on Question 3.

- Reweigh the crucible and contents with the lid on. Record the mass.
- Heat the crucible and contents strongly for a further two minutes, without the lid.
- Replace the lid and leave the crucible and residue to cool for at least five minutes.
- Reweigh the crucible and contents with the lid on. Record the mass.
- Calculate and record the starting mass of **FB 1** and the mass of residue obtained.

Ι	
II	
III	
IV	
V	

[5]

(b) Calculations

(i) Calculate the number of moles of carbon dioxide produced during the thermal decomposition of **FB 1** by using the formula below.

moles of CO_2 produced = $\frac{\text{mass lost during heating}}{M_r CO_2 + M_r H_2 O}$

moles of CO_2 produced = mol [1]

(ii) Use your answer to (i) and the equation on page 6 to calculate the mass of sodium hydrogencarbonate in the **FB 1** you used in this experiment.

mass of NaHCO₃ in **FB 1** = g [1]

(iii) For this experiment calculate the percentage by mass of NaHCO₃ in **FB 1**.

percentage by mass of NaHCO₃ in **FB 1** = % [1]

-[1]
- (iii) A student suggested that it would have been more accurate to carry out the thermal decomposition with the lid on the crucible throughout the experiment.

State and explain whether or not you agree with this suggestion.

......[1]

- (iv) Suggest which of the two procedures, titration or thermal decomposition, gives a more accurate value for the percentage by mass of NaHCO₃ in FB 1.
 - Explain your choice.

.....[1]

[Total: 13]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

- 3 (a) FB 4 has the same composition as the residue obtained in Question 2. It contains two sodium compounds, one of which is X. Both anions present in FB 4 are listed in the Qualitative Analysis Notes.
 - (i) To a small spatula measure of **FB 4** in a test-tube, add dilute nitric acid slowly. Record your observations. Keep the solution produced for use in (ii).

-[2]
- (ii) To a 1 cm depth of the solution obtained in (i) in a test-tube, add a few drops of aqueous silver nitrate, followed by aqueous ammonia. Record your observations.

(iii) Give the equation for one reaction taking place in (i). State symbols are **not** required.

......[1]

- (b) Dissolve the remaining **FB 4** in a 5 cm depth of distilled water in a boiling tube. This solution is **FB 5**.
 - (i) Carry out the following tests and record your observations. Use a 1 cm depth of **FB 5** in a test-tube for each test.

test	observations
Add several drops of aqueous copper(II) sulfate, then	
add dilute sulfuric acid.	
Add a few drops of aqueous barium chloride or aqueous barium nitrate, then	
add dilute nitric acid.	
Add a few drops of methyl orange indicator.	
Add several drops of aqueous silver nitrate, then	
add dilute nitric acid.	

[6]

(ii) To a 1 cm depth of **FB 5** in a boiling tube, add an equal volume of aqueous sodium hydroxide and warm carefully, then add a small piece of aluminium foil to the mixture. Record your observations.

		[1]
(iii)	Using your observations in (a) and (b), name X.	
		[1]
(iv)	What can you deduce about FB 4 from the observation when methyl orange indicator vadded to FB 5 ?	vas
		[1]
	[Total:	13]

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with											
ion	NaOH(aq)	NH ₃ (aq)										
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess										
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	-										
barium, Ba²+(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.										
calcium, Ca²⁺(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.										
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess										
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution										
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess										
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess										
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess										
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess										
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess										

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br [_] (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I [_] (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO₃⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with OH-(aq) and Al foil
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

		18	T 2	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Ъ	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon _												
		17			σ	• LL	fluorine 19.0	17	Cl	chlorine 35.5	35	Br	bromine 79.9	53	Ι	iodine 126.9	85	At	astatine 				71	Lu	Iutetium 175.0	103	Ļ	lawrencium -			
		16			α	0	oxygen 16.0	16	თ	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	polonium –	116	2	livermorium –	70	Υb	ytterbium 173.1	102	No	nobelium -			
		15			2	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ē	bismuth 209.0				69	Tm	thulium 168.9	101	Md	mendelevium -			
		14			9	o ان	carbon 12.0	14	N.	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	Pb	lead 207.2	114	Γl	flerovium –	68	ц	erbium 167.3	100	Еm	fermium I			
		13			5	þ M	boron 10.8	13	Ρl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	11	thallium 204.4						holmium 164.9		Es	einsteinium –			
										12	30	Zn	zinc 65.4	48	Cd	cadmium 112.4	80	Hg	mercury 200.6	112	C	copernicium -	66	DV	dysprosium 162.5	98	ç	californium -			
ments	dn									11	29	Cu	copper 63.5	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	roentgenium -			terbium 158.9		Ŗ	berkelium -			
ole of Ele										10	28	Ż	nickel 58.7	46	Ъd	palladium 106.4	78	Ę	platinum 195.1	110	Ds	darmstadtium -	64	Gd	gadolinium 157.3	96	Cm	curium			
The Periodic Table of Elements	Group									o	27	ပိ	cobalt 58.9	45	Rh	rhodium 102.9	77	Ir	iridium 192.2	109	Mt	meitnerium -	63	Eu	europium 152.0	95	Am	americium -			
The Per			- I	hydrogen 1.0						80	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	76	Os	osmium 190.2	108	Hs	hassium -	62	Sm	samarium 150.4	94	Pu	plutonium I			
										7	25	Mn	manganese 54.9	43	Ц	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium I	61	Pm	promethium -	93	Np	neptunium -			
						loc	SS			9	24	ŗ	chromium 52.0	42	Мо	molybdenum 95.9	74	×	tungsten 183.8	106	Sg	seaborgium -	60	Νd	neodymium 144.4	92	⊃	uranium 238.0			
							Key	atomic number	atomic symbol	name relative atomic mass			5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Ца Та	tantalum 180.9	105	Db	dubnium I		Ρ	En L	91	Ра	protactinium 231.0
					6	atoi				4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ŧ	hafnium 178.5	104	Rf	rutherfordium -	58	Ce	cerium 140.1	06	Ч	thorium 232.0			
										ю	21	Sc	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 138.9	89	Ac	actinium -			
		2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -	<u> </u>	ds							
		-			¢.	-: ·	lithium 6.9			sodium 23.0		×	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	Ļ	francium -		lanthanoids			actinoids				

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

PMT

12