## Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

## CENTRE NUMBER

$\square$


## CHEMISTRY

9701/34
Paper 3 Advanced Practical Skills 2
October/November 2018
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.


| For Examiner's Use |  |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| Total |  |

This document consists of $\mathbf{1 2}$ printed pages.

## Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 In this experiment you will determine the percentage by mass of an impure sample of sodium hydrogencarbonate, $\mathrm{NaHCO}_{3}$.
You will do this by titration with hydrochloric acid, HCl . The impurity in the sample is $\mathbf{X} . \mathbf{X}$ is a sodium compound which does not react with HCl .

FB 1 is a mixture containing sodium hydrogencarbonate and $\mathbf{X}$.
You are supplied with approximately 6.5 g of FB1. You will also use FB 1 in Question 2.
FB 2 is $0.105 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
methyl orange indicator
(a) Method

## Preparing a solution of FB 1

- Weigh the $100 \mathrm{~cm}^{3}$ beaker. Record the mass.
- Add between 2.8 g and 3.0 g of FB 1 to the beaker.
- Reweigh the beaker with FB 1. Record the mass.
- Calculate and record the mass of FB 1 used.
- Add approximately $50 \mathrm{~cm}^{3}$ of distilled water to FB 1 in the beaker.
- Stir the mixture with a glass rod until all the FB 1 has dissolved.
- Transfer this solution into the $250 \mathrm{~cm}^{3}$ volumetric flask.
- Wash the beaker with distilled water and transfer the washings to the volumetric flask.
- Add distilled water to the volumetric flask up to the mark.
- Shake the flask thoroughly.
- This solution of impure sodium hydrogencarbonate is FB 3. Label the flask FB 3.


## Titration of FB 3

- Fill the burette with FB 2.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 3 into a conical flask.
- Add approximately 10 drops of methyl orange indicator.
- Carry out a rough titration.
- Record your burette readings and the rough titre in the space below.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FB 2 added in each accurate titration.

| I |  |
| :---: | :--- |
| II |  |
| III |  |
| IV |  |
| V |  |
| VI |  |
| VII |  |
| VIII |  |

(b) From your accurate titration results, obtain a suitable value for the volume of FB 2 to be used in your calculations.
Show clearly how you obtained this value.
(c) Calculations
(i) Give your answers to (ii), (iii), (iv) and (v) to the appropriate number of significant figures.
(ii) Calculate the number of moles of hydrochloric acid, HCl , in the volume of FB 2 calculated in (b).

$$
\text { moles of } \mathrm{HCl}=
$$ mol

(iii) Complete and balance the equation for the reaction of sodium hydrogencarbonate with hydrochloric acid. Include state symbols.
$\ldots . \mathrm{NaHCO}_{3} \ldots \ldots+\ldots . \mathrm{HCl} \ldots \ldots \rightarrow \ldots \mathrm{NaCl} \ldots \ldots+\ldots . \mathrm{CO}_{2} \ldots \ldots+\ldots \ldots \ldots \ldots .$.
Deduce the number of moles of sodium hydrogencarbonate that reacted with the number of moles of HCl calculated in (ii).
moles of $\mathrm{NaHCO}_{3}=$ mol
(iv) Use your answer to (iii) to calculate the number of moles of sodium hydrogencarbonate in the FB 1 that you weighed out.
moles of $\mathrm{NaHCO}_{3}$ in FB 1 used $=$ $\qquad$ mol
(v) Calculate the percentage by mass of $\mathrm{NaHCO}_{3}$ in FB 1.

Question 2 starts on the next page.

2 You will determine the percentage by mass of $\mathrm{NaHCO}_{3}$ in FB 1 again, this time by thermal decomposition.

The equation for the thermal decomposition of sodium hydrogencarbonate is shown.

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

FB 1 is a mixture containing sodium hydrogencarbonate and an impurity, $\mathbf{X}$.

## (a) Method

- Weigh a crucible with its lid and record the mass.
- Add between 2.8 g and 3.0 g of FB 1 to the crucible. Weigh the crucible and lid with FB 1 and record the mass.
- Place the crucible on the pipe-clay triangle. Heat the crucible and contents gently for approximately two minutes, with the lid off.
- Then heat strongly for approximately three minutes.
- Replace the lid and leave the crucible and residue to cool for at least five minutes.

While the crucible is cooling, you may wish to begin work on Question 3.

- Reweigh the crucible and contents with the lid on. Record the mass.
- Heat the crucible and contents strongly for a further two minutes, without the lid.
- Replace the lid and leave the crucible and residue to cool for at least five minutes.
- Reweigh the crucible and contents with the lid on. Record the mass.
- Calculate and record the starting mass of FB 1 and the mass of residue obtained.

| I |  |
| :---: | :--- |
| II |  |
| III |  |
| IV |  |
| V |  |

## (b) Calculations

(i) Calculate the number of moles of carbon dioxide produced during the thermal decomposition of FB 1 by using the formula below.

$$
\text { moles of } \mathrm{CO}_{2} \text { produced }=\frac{\text { mass lost during heating }}{M_{\mathrm{r}} \mathrm{CO}_{2}+M_{\mathrm{r}} \mathrm{H}_{2} \mathrm{O}}
$$

(ii) Use your answer to (i) and the equation on page 6 to calculate the mass of sodium hydrogencarbonate in the FB 1 you used in this experiment.

$$
\text { mass of } \mathrm{NaHCO}_{3} \text { in FB } 1=
$$

(iii) For this experiment calculate the percentage by mass of $\mathrm{NaHCO}_{3}$ in FB 1.
(c) (i) Explain why the crucible and contents were heated for a further two minutes after the first weighing of the crucible and residue.
$\qquad$
$\qquad$
$\qquad$
(ii) What assumption did you make about the behaviour of $\mathbf{X}$ when you carried out the calculation?
$\qquad$
$\qquad$
(iii) A student suggested that it would have been more accurate to carry out the thermal decomposition with the lid on the crucible throughout the experiment.

State and explain whether or not you agree with this suggestion.
$\qquad$
$\qquad$
(iv) Suggest which of the two procedures, titration or thermal decomposition, gives a more accurate value for the percentage by mass of $\mathrm{NaHCO}_{3}$ in FB 1.
Explain your choice.
$\qquad$
$\qquad$
$\qquad$

## Qualitative Analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests for ions present should be attempted.

3 (a) FB 4 has the same composition as the residue obtained in Question 2.
It contains two sodium compounds, one of which is $\mathbf{X}$.
Both anions present in FB 4 are listed in the Qualitative Analysis Notes.
(i) To a small spatula measure of FB 4 in a test-tube, add dilute nitric acid slowly. Record your observations. Keep the solution produced for use in (ii).
$\qquad$
$\qquad$
$\qquad$
(ii) To a 1 cm depth of the solution obtained in (i) in a test-tube, add a few drops of aqueous silver nitrate, followed by aqueous ammonia.
Record your observations.
$\qquad$
$\qquad$
$\qquad$
(iii) Give the equation for one reaction taking place in (i). State symbols are not required.
(b) Dissolve the remaining FB 4 in a 5 cm depth of distilled water in a boiling tube. This solution is FB 5.
(i) Carry out the following tests and record your observations. Use a 1 cm depth of FB 5 in a test-tube for each test.

| test |  |
| :--- | :--- |
| Add several drops of <br> aqueous copper(II) sulfate, <br> then |  |
| add dilute sulfuric acid. |  |
| Add a few drops of aqueous <br> barium chioride or aqueous <br> barium nitrate, then |  |
| add dilute nitric acid. |  |
| Add a few drops of methyl <br> orange indicator. |  |
| Add several drops of <br> aqueous silver nitrate, then |  |
| add dilute nitric acid. |  |

(ii) To a 1 cm depth of FB 5 in a boiling tube, add an equal volume of aqueous sodium hydroxide and warm carefully, then add a small piece of aluminium foil to the mixture.
Record your observations.
(iii) Using your observations in (a) and (b), name $\mathbf{X}$.
$\qquad$
(iv) What can you deduce about FB 4 from the observation when methyl orange indicator was added to FB 5?
$\qquad$

## Qualitative Analysis Notes

## 1 Reactions of aqueous cations

| ion | reaction with |  |
| :---: | :---: | :---: |
|  | $\mathrm{NaOH}(\mathrm{aq})$ | $\mathrm{NH}_{3}(\mathrm{aq})$ |
| aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$ | white ppt. soluble in excess | white ppt. insoluble in excess |
| ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$ | no ppt. <br> ammonia produced on heating | - |
| barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$ | faint white ppt. is nearly always observed unless reagents are pure | no ppt. |
| calcium, <br> $\mathrm{Ca}^{2+}(\mathrm{aq})$ | white ppt. with high [ $\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$ | no ppt. |
| $\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3^{+}(\mathrm{aq})} \end{aligned}$ | grey-green ppt. soluble in excess | grey-green ppt. insoluble in excess |
| $\begin{aligned} & \text { copper(II), } \\ & \text { Cu }^{2+}(\mathrm{aq}) \end{aligned}$ | pale blue ppt. insoluble in excess | blue ppt. soluble in excess giving dark blue solution |
| iron(II), <br> $\mathrm{Fe}^{2+}(\mathrm{aq})$ | green ppt. turning brown on contact with air insoluble in excess | green ppt. turning brown on contact with air insoluble in excess |
| iron(III), <br> $\mathrm{Fe}^{3+}(\mathrm{aq})$ | red-brown ppt. insoluble in excess | red-brown ppt. insoluble in excess |
| magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$ | white ppt. insoluble in excess | white ppt. insoluble in excess |
| $\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$ | off-white ppt. rapidly turning brown on contact with air insoluble in excess | off-white ppt. rapidly turning brown on contact with air insoluble in excess |
| $\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$ | white ppt. soluble in excess | white ppt. soluble in excess |

## 2 Reactions of anions

| ion | reaction |
| :--- | :--- |
| carbonate, <br> $\mathrm{CO}_{3}{ }^{2-}$ | $\mathrm{CO}_{2}$ liberated by dilute acids |
| chloride, <br> $\mathrm{Cl}-(\mathrm{aq})$ | gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\left.\mathrm{NH}_{3}(\mathrm{aq})\right)$ |
| bromide, <br> $\mathrm{Br}-(\mathrm{aq})$ | gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})\left(\right.$ partially soluble in $\left.\mathrm{NH}_{3}(\mathrm{aq})\right)$ |
| iodide, <br> $\mathrm{I}^{-}(\mathrm{aq})$ | gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\left.\mathrm{NH}_{3}(\mathrm{aq})\right)$ |
| nitrate, <br> $\mathrm{NO}_{3}^{-}(\mathrm{aq})$ | $\mathrm{NH}_{3}$ liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil |
| nitrite, <br> $\mathrm{NO}_{2}^{-}(\mathrm{aq})$ | gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids) |
| sulfate, <br> $\mathrm{SO}_{4}^{2-}(\mathrm{aq})$ | gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids) |
| sulfite, <br> $\mathrm{SO}_{3}^{2-}$ | $(\mathrm{aq})$ |

## 3 Tests for gases

| gas | test and test result |
| :--- | :--- |
| ammonia, $\mathrm{NH}_{3}$ | turns damp red litmus paper blue |
| carbon dioxide, $\mathrm{CO}_{2}$ | gives a white ppt. with limewater (ppt. dissolves with excess $\mathrm{CO}_{2}$ ) |
| chlorine, $\mathrm{Cl}_{2}$ | bleaches damp litmus paper |
| hydrogen, $\mathrm{H}_{2}$ | 'pops' with a lighted splint |
| oxygen, $\mathrm{O}_{2}$ | relights a glowing splint |

The Periodic Table of Elements


|  |  |
| :---: | :---: |
|  |  |
|  | ${ }^{\circ} \mathrm{D}$ |
|  |  |
|  |  |
|  | ®u |
|  | $\text { ब } \frac{v}{\infty}$ |
|  |  |
|  |  |
|  | む |
| ढ昆 |  |
|  | ๙ コ |
|  |  |
|  | －ᄃ 言㕸 |
| $\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$ |  |

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

